Федеральная система разведки и контроля воздушного пространства. Скрытый «Рубеж» воздушного контроля

BC / NW 2015 № 2 (27): 13 . 2

КОНТРОЛЬ ВОЗДУШНОГО ПРОСТРАНСТВА ЧЕРЕЗ КОСМОС

Климов Ф.Н., Кочев М. Ю., Гарькин Е.В., Луньков А.П.

Высокоточные средства воздушного нападения, такие как крылатые ракеты и беспилотные ударные самолёты, в процессе своего совершенствования стали обладать большой дальностью от 1500 до 5000 километров. Малозаметность таких целей во время полёта требует их обнаружения и идентификации на траектории разгона. Зафиксировать такую цель на большом расстоянии возможно, либо загоризонтными радиолокационными станциями (ЗГ РЛС), либо с помощью локационных или оптических систем спутникового базирования.

Ударные беспилотные самолёты и крылатые ракеты летают чаще всего со скоростями близкими к скоростям пассажирских воздушных судов, следовательно, нападение такими средствами может быть замаскировано под обычное воздушное движение. Это ставит перед системами контроля воздушного пространства задачу выявления и идентификации таких средств нападения от момента пуска и на максимальной дальности от рубежей эффективного поражения их средствами ВКС. Для решения данной задачи необходимо применять все имеющиеся и разрабатываемые системы контроля и наблюдения за воздушным пространством, в том числе загоризонтные РЛС и спутниковые группировки.

Запуск крылатой ракеты или ударного беспилотного самолёта может быть осуществлён из торпедного аппарата сторожевого катера, с внешней подвески самолёта или с пусковой установки замаскированной под стандартный морской контейнер, расположенный на гражданском сухогрузе, автомобильном прицепе, железнодорожной платформе. Спутники системы предупреждения о ракетном нападении уже сегодня фиксируют и отслеживают координаты запусков беспилотных самолётов или крылатых ракет в горах и в океане по факелу двигателя на участке разгона. Следовательно, спутникам системы предупреждения о ракетном нападении необходимо отслеживать не только территорию вероятного противника, но и акваторию океанов и материков глобально.

Размещение радиолокационных систем на спутниках, для контроля воздушно-космического пространства сопряжено сегодня с трудностями технологического и финансового характера. Но в современных условиях такая новая технология как вещательное автоматическое зависимое наблюдение (АЗН-В) может быть использована для контроля воздушного пространства через спутники. Информацию с коммерческих воздушных судов по системе АЗН-В можно собирать с помощью спутников, разместив на их борту приёмники, работающие на частотах АЗН-В и ретрансляторы полученной информации на наземные центры контроля воздушного пространства. Таким образом, есть возможность создать глобальное поле электронного наблюдения за воздушным пространством планеты. Спутниковые группировки могут стать источниками полётной информации о воздушных судах на достаточно больших территориях.

Информация о воздушном пространстве, приходящая от приёмников системы АЗН-В расположенных на спутниках, даёт возможность контролировать воздушные суда над океанами и в складках местности горных массивов континентов. Эта информация позволит нам выделять средства воздушного нападения из потока коммерческих воздушных судов с последующей их идентификацией.

Идентификационная информация АЗН-В о коммерческих воздушных судах, поступающая через спутники, создаст возможность снизить риски терактов и диверсий в наше время. Кроме того такая информация даст возможность обнаруживать аварийные воздушные суда и места авиационных катастроф в океане вдали от берегов.

Оценим возможность применения различных спутниковых систем для приёма полётной информации самолётов по системе АЗН-В и ретрансляции данной информации на наземные комплексы контроля воздушного пространства. Современные воздушные суда передают полётную информацию по системе АЗН-В с помощью бортовых транспондеров мощностью 20 Вт на частоте 1090 МГц.

Система АЗН-В работает на частотах, которые свободно проникают через ионосферу Земли. Передатчики системы АЗН-В, расположенные на борту воздушных судов имеют ограниченную мощность, следовательно, приёмники, расположенные на борту спутников должны иметь достаточную чувствительность.

Используя энергетический расчёт спутниковой линии связи Самолёт-Спутник, мы можем оценить максимальную дальность, на которой возможен приём информации спутником с воздушных судов. Особенность используемой спутниковой линии это ограничения на массу, габаритные размеры и энергопотребление, как бортового транспондера самолёта, так и бортового ретранслятора спутника.

Для определения максимальной дальности, на которой возможен приём спутником АЗН-В сообщений, воспользуемся известным уравнением для линии спутниковых систем связи на участке земля – ИСЗ:

где

– эффективная мощность сигнала на выходе передатчика ;

– эффективная мощность сигнала на входе приемника;

– коэффициент усиления передающей антенны;

– наклонная дальность от КА до приёмной ЗС;

–длина волны на линии «ВНИЗ»

волны на линии «Вниз»;

– эффективная площадь апертуры передающей антенны;

– коэффициент передачи волноводного тракта между передатчиком и антенной КА;

– КПД волноводного тракта между приёмником и антенной ЗС;

Преобразуя формулу – находим наклонную дальность, на которой возможен приём спутником полётной информации:

d = .

Подставляем в формулу параметры соответствующие стандартному бортовому транспондеру и приёмному стволу спутника. Как показывают расчёты, максимальная дальность передачи на линии самолёт-спутник равна 2256 км. Такая наклонная дальность передачи на линии самолёт-спутник возможна только при работе через низкоорбитальные группировки спутников. При этом, мы используем стандартное бортовое оборудование воздушных судов, не усложняя требования к коммерческим летательным аппаратам.

Наземная станция приёма информации имеет значительно меньшие ограничения по массе и габаритам чем бортовая аппаратура спутников и самолётов. Такая стация может быть оснащена более чувствительными приёмными устройствами и антеннами с высоким коэффициентом усиления. Следовательно, дальность связи на линии спутник-земля зависит только от условий прямой видимости спутника.

Используя данные орбит спутниковых группировок, мы можем оценить максимальную наклонную дальность связи между спутником и наземной станцией приёма по формуле:

,

где Н–высота орбиты спутника;

– радиус Земной поверхности.

Результаты расчётов максимальной наклонной дальности для точек на различных географических широтах представлены в таблице 1.

Орбком

Иридиум

Гонец

Глобалстар

Сигнал

Высота орбиты, км

1400

1414

1500

Радиус Земли северный полюс, км

6356,86

2994,51

3244,24

4445,13

4469,52

4617,42

Радиус Земли северный полярный круг, км

6365,53

2996,45

3246,33

4447,86

4472,26

4620,24

Радиус Земли 80°, км

6360,56

2995,34

3245,13

4446,30

4470,69

4618,62

Радиус Земли 70°, км

6364,15

2996,14

3245,99

4447,43

4471,82

4619,79

Радиус Земли 60°, км

6367,53

2996,90

3246,81

4448,49

4472,89

4620,89

Радиус Земли 50°, км

6370,57

2997,58

3247,54

4449,45

4473,85

4621,87

Радиус Земли 40°, км

6383,87

3000,55

3250,73

4453,63

4478,06

4626,19

Радиус Земли 30°, км

6375,34

2998,64

3248,68

4450,95

4475,36

4623,42

Радиус Земли 20°, км

6376,91

2998,99

3249,06

4451,44

4475,86

4623,93

Радиус Земли 10°, км

6377,87

2999,21

3249,29

4451,75

4476,16

4624,24

Радиус Земли экватор, км

6378,2

2999,28

3249,37

4451,85

4476,26

4624,35

Максимальная дальность передачи на линии самолёт-спутник меньше чем максимальная наклонная дальность на линии спутник-земля у спутниковых систем Орбком, Иридиум и Гонец. Наиболее близка максимальная наклонная дальность данные к рассчитанной максимальной дальности передачи данных у спутниковой системы Орбком.

Расчёты показывают, что возможно создать систему наблюдения за воздушным пространством, использующую спутниковую ретрансляцию АЗН-В сообщений с воздушных судов на наземные центры обобщения полётной информации. Такая система наблюдения позволит увеличить дальность контролируемого пространства с наземного пункта до 4500 километров без использования межспутниковой связи, что обеспечит увеличение зоны контроля воздушного пространства. При использовании каналов межспутниковой связи мы сможем контролировать воздушное пространство глобально.


Рис.1 «Контроль воздушного пространства с помощью спутников»


Рис.2 «Контроль воздушного пространства с межспутниковой связью»

Предлагаемый метод контроля воздушного пространства позволяет:

Расширить зону действия системы контроля воздушного пространства, в том числе на акваторию океанов и территорию горных массивов до 4500 км от приёмной наземной стации;

При использовании межспутниковой системы связи, контролировать воздушное пространство Земли возможно глобально;

Получать полётную информацию от воздушных судов независимо от зарубежных систем наблюдения воздушного пространства;

Селектировать воздушные объекты, отслеживаемые ЗГ РЛС по степени их опасности на дальних рубежах обнаружения.

Литература:

1. Федосов Е.А. «Полвека в авиации». М: Дрофа, 2004.

2. «Спутниковая связь и вещание. Справочник. Под редакцией Л.Я.Кантора». М: Радио и связь, 1988.

3. Андреев В.И. «Приказ Федеральной службы воздушного транспорта РФ от 14 октября 1999г. № 80 «О создании и внедрении системы радиовещательного автоматического зависимого наблюдения в гражданской авиации России».

4. Трасковский А. «Авиационная миссия Москвы: базовый принцип безопасного управления». «Авиапанорама». 2008. №4.

ВОЕННАЯ МЫСЛЬ № 4/2000 Стр. 30-33

Федеральная система разведки и контроля воздушного пространства: проблемы совершенствования

Генерал-лейтенант А.В.ШРАМЧЕНКО

Полковник В.П. САУШКИН, кандидат военных наук

ВАЖНОЙ составной частью обеспечения национальной безопасности Российской Федерации и безопасности воздушного движения над территорией страны являются радиолокационная разведка и контроль воздушного пространства. Ключевая роль в решении этой задачи принадлежит радиолокационным средствам и системам Министерства обороны и Федеральной службы воздушного транспорта (ФСВТ).

На современном этапе, когда особую остроту приобретают вопросы рационального использования выделяемых на оборону материальных и финансовых средств, сбережения ресурсов вооружения и военной техники, главным направлением развития радиолокационных средств и систем следует считать не создание новых, а организацию более эффективного комплексного использования существующих. Данное обстоятельство предопределило необходимость концентрации усилий различных ведомств на интеграции радиолокационных средств и систем в Единую автоматизированную радиолокационную систему (ЕАРЛС) в рамках Федеральной системы разведки и контроля воздушного пространства (ФСР и КВП) Российской Федерации.

Разработанная в соответствии с Указом Президента России федеральная целевая программа совершенствования ФСР и КВП на 2000-2010 годы провозглашает своей целью достижение требуемой эффективности и качества решения задач противовоздушной обороны, охраны государственной границы РФ в воздушном пространстве, радиолокационного обеспечения полетов авиации и организации воздушного движения на наиболее важных воздушных направлениях на основе комплексного использования радиолокационных средств и систем видов ВС РФ и ФСВТ в условиях сокращения суммарного состава сил, средств и ресурсов.

Главной задачей первого этапа совершенствования ФСР и КВП (2000- 2005 годы) определено создание ЕАРЛС в Центральной и Северо- Кавказской зонах ПВО, в Калининградском районе ПВО (Балтийский флот), в отдельных районах Северо-Западной и Восточной зон ПВО на основе комплексного оснащения группировок войск и позиций ФСВТ унифицированными средствами автоматизации межвидового применения.

Для этого предусматривается прежде всего разработка концепций развития радиолокационных средств обнаружения для оснащения ЕАРЛС и единой системы отображения подводной, надводной и воздушной обстановки на морских театрах. Особое внимание будет уделено системотехническим вопросам построения системы обмена информацией реального масштаба времени ФСР и КВП на базе существующих и перспективных средств.

В этот период предстоит освоить серийное производство радиолокационных средств, прошедших государственные испытания, унифицированных комплексов средств автоматизации (КСА) межвидового применения в стационарном и мобильном исполнении, начать планомерное оснащение ими группировок войск в соответствии со стратегией создания ЕАРЛС. Кроме того, необходимо определить состав, организационную структуру и вооружение мобильного резерва ФСР и KBIT постоянной готовности, а также перечень радиотехнических подразделений береговой службы наблюдения ВМФ для включения в состав ФСР и КВП, разработать предложения и планы их поэтапного перевооружения. Предстоит провести мероприятия по модернизации радиоэлектронной техники, продлению ее ресурса и поддержанию существующего парка в исправном состоянии, НИОКР, направленные на создание приоритетных перспективных образцов межвидового применения, разработать нормы (стандарты и рекомендации) базовых вариантов оборудования подразделений Минобороны и позиций ФС ВТ двойного назначения, в соответствии с которыми проведено их дооснащение.

Результатом работы должно стать проведение испытаний экспериментальных участков фрагментов ЕАРЛС, дооснащение их унифицированными комплексами обмена информацией, распространение полученного опыта на другие зоны и районы ПВО.

На втором этапе (2006-2010 годы) предусматривается завершение формирования ЕАРЛС в Северо-Западной и Восточной зонах ПВО; создание фрагментов ЕАРЛС в отдельных районах Уральской и Сибирской зон ПВО; создание мобильного резерва ФСР и КВП постоянной готовности, его оснащение мобильными РЛС и КСА межвидового применения; завершение ОКР по разработке приоритетных перспективных образцов радиоэлектронной техники межвидового применения и начало планомерного оснащения ими ФСР и КВП; завершение построения системы обмена информацией для ФСР и КВП в целом; проведение НИОКР по разработке унифицированных блочно-модульных РЛС и КСА межвидового применения; создание научно-технического задела по дальнейшему развитию и совершенствованию ФСР и КВП.

Следует отметить, что жесткая ведомственная подчиненность средств радиолокации видов ВС РФ и ФСВТ в сочетании с низким уровнем автоматизации процессов управления силами и средствами радиолокационной разведки затрудняет построение ФСР и КВП по единому замыслу и плану и особенно принятие оптимальных решений по ее использованию в интересах всех потребителей радиолокационной информации. Так, не определены показатели эффективности применения ФСР и КВП при решении функциональных задач, закономерности и принципы управления, полномочия и границы ответственности органов управления по управлению силами и средствами радиолокационной разведки в мирное время, при несении боевого дежурства и в процессе боевого применения.

Сложность выявления закономерностей и принципов управления ФСР и КВП обусловлена недостаточным опытом ее использования. Требуется создание соответствующей терминологии с выбором наиболее точных определений основных понятий, имеющих отношение к радиолокации. Тем не менее сложились определенные взгляды на принципы управления сложными организационно-техническими системами, организацию и методы работы органов управления с учетом перспектив развития и внедрения АСУ. Накоплен богатый опыт решения задач управления радиолокационными средствами и системами в видах ВС РФ и ФСВТ.

По нашему мнению, управление ФСР и КВП должно представлять собой комплекс согласованных мероприятий и действий органов управления ФСР и КВП по поддержанию подчиненных сил и средств в постоянной готовности к их применению и руководству ими при выполнении поставленных задач. Оно должно осуществляться с учетом требований всех заинтересованных сторон на основе автоматизации процессов сбора, обработки и распределения информации на всех уровнях.

Исследования показали, что, во-первых, только централизованное планирование и управление силами и средствами ФСР и КВП позволит при заданном уровне эффективности максимально сохранить запас технического ресурса радиоэлектронной техники, уменьшить численность обслуживающего персонала, создать единую систему эксплуатации, ремонта и материально-технического обеспечения, значительно сократить эксплуатационные расходы; во-вторых, оргструктура и способы управления должны быть такими, при которых в максимальной степени используются возможности технических средств для достижения целей управления; в-третьих, только комплексная автоматизация процессов управления и использование оптимизационных моделей позволяют добиться существенного повышения эффективности применения ФСР и КВП по сравнению с традиционными эвристическими методами планирования и управления.

Основными принципами управления ФСР и КВП, на наш взгляд, должны стать централизация и единоначалие. Действительно, динамичность и скоротечность изменения воздушной и радиоэлектронной обстановки, особенно в условиях ведения боевых действий, значительно повысили роль фактора времени и необходимость единоличного принятия решения и твердого проведения его в жизнь. А этого можно добиться только при жесткой централизации прав в руках одного лица. Централизация управления позволит в короткие сроки и наилучшим образом координировать действия разнородных сил и средств ФСР и КВП, эффективно применять их, быстро сосредоточивать усилия на главных направлениях, на решении главных задач. При этом централизованное управление должно сочетаться с предоставлением подчиненным инициативы в определении способов выполнения поставленных им задач.

Необходимость единоначалия и централизации управления вытекает также из самих целей создания ФСР и КВП, какими являются снижение суммарных затрат Минобороны и ФСВТ на проведение НИОКР по разработке средств автоматизации и радиолокации, на содержание и развитие позиций радиолокационных средств; единое понимание воздушной обстановки в органах управления всех уровней; обеспечение радиоэлектронной совместимости средств радиолокации и связи видов ВС РФ и ФСВТ в районах совместного базирования; уменьшение типажа и унификация радиолокационных средств, КСА и средств связи, создание единых стандартов их сопряжения.

Поскольку основу ФСР и КВП составляют радиотехнические войска ВВС, общее руководство созданием и применением ФСР и КВП целесообразно возложить на главнокомандующего ВВС, который в качестве председателя Центральной межведомственной комиссии ФСР и КВП может осуществлять административное управление ФСР и КВП. В задачи комиссии должны быть включены: разработка планов развития ФСР и КВП и координация НИОКР в этой области с учетом основных направлений совершенствования сил и средств радиолокационной разведки видов ВС РФ и ФСВТ; проведение единой технической политики при поэтапном создании ФСР и КВП, выработка предложений и рекомендаций видам ВС РФ и ФСВТ по направлениям развития средств радиолокации, автоматизации и связи, их стандартизации и совместимости; разработка программ и планов оснащения ФСР и КВП техническими средствами, обеспечивающими качественное решение задач мирного и военного времени, организация работ по сертификации, аттестации и лицензированию технических средств; согласование с видами Вооруженных Сил и ФСВТ разрабатываемых нормативных и правовых документов, регламентирующих порядок функционирования ФСР и КВП; согласованное планирование и формирование заказов на серийное производство, закупку новой техники для ФСР и КВП и ее развертывание; планирование и организация применения ФСР и КВП в интересах всех заинтересованных потребителей радиолокационной информации; согласование с видами ВС РФ и ФСВТ вопросов, касающихся размещения и передислокации радиолокационных подразделений.

Непосредственное управление созданием и совершенствованием ФСР и КВП главнокомандующий ВВС может осуществлять через управление радиотехнических войск ВВС, которое выполняет функции аппарата Центральной межведомственной комиссии.

Общее руководство применением ФСР и КВП в зонах ПВО целесообразно возложить на командующих объединениями ВВС, в районах ПВО - на командиров соединений ПВО, которые могут осуществлять управление ФСР и КВП лично, через зональные межведомственные комиссии ФСР и КВП, штабы объединений ВВС и соединений ПВО, а также через своих заместителей и начальников радиотехнических войск.

В задачи зональной межведомственной комиссии ФСР и КВП, штаба объединения ВВС (соединения ПВО) должно входить: планирование и организация боевого дежурства части сил и средств ФСР и КВП в зоне (районе) ПВО; согласование планов применения ФСР и КВП в зоне (районе) ПВО со всеми заинтересованными ведомствами; организация и проведение подготовки личного состава и техники ФСР и КВП к выполнению поставленных задач; организация радиолокационной разведки и контроля воздушного пространства ФСР и КВП в зоне (районе) ПВО; контроль качества и устойчивости обеспечения радиолокационной информацией органов управления; организация взаимодействия с силами и средствами разведки и контроля воздушного пространства, не входящими в состав ФСР и КВП; согласование вопросов эксплуатации технических средств ФСР и КВП.

Структурно система управления ФСР и КВП должна включать органы управления, пункты управления, систему связи, комплексы средств автоматизации и др. Ее основу, на наш взгляд, может составить система управления радиотехническими войсками ВВС.

Непосредственное управление силами и средствами радиолокационной разведки и контроля воздушного пространства целесообразно производить с существующих пунктов управления видов Вооруженных Сил и ФСВТ (по ведомственной принадлежности). При этом свою работу и работу подчиненных сил и средств они должны организовывать в соответствии с требованиями потребителей радиолокационной информации на основе единого планирования применения ФСР и КВП в зонах и районах ПВО.

В ходе боевого применения радиотехнические подразделения (радиолокационные позиции) ФСР и КВП по вопросам ведения радиолокационной разведки и выдачи радиолокационной информации должны оперативно подчиняться органам управления радиотехнических войск ВВС через пункты управления соответствующих видов Вооруженных Сил.

В условиях все возрастающей динамичности воздушной и радиоэлектронной обстановки и активного воздействия противостоящей стороны на радиолокационные средства и системы требования к обеспечению эффективного управления ими резко возрастают. Кардинально решить проблему повышения эффективности применения ФСР и КВП можно только через комплексную автоматизацию процессов управления на основе внедрения новых информационных технологий. Четкое формулирование целей функционирования ФСР и КВП, задач управления, определение целевых функций, разработка моделей, адекватных объектам управления, - вот основные проблемы, которые необходимо решить при синтезе структуры системы управления и алгоритмов ее функционирования, распределении функций по уровням системы управления и определении их оптимального состава.

Военная мысль. 1999. № 6. С. 20-21.

Для комментирования необходимо зарегистрироваться на сайте

Надежная Воздушно-Космическая Оборона (ВКО) страны невозможна без создания эффективной системы разведки и контроля воздушного пространства. Важное место в ней занимает маловысотная локация. Сокращение подразделений и средств радиолокационной разведки привело к тому, что над территорией РФ сегодня существуют открытые участки государственной границы и внутренних районов страны. ОАО «НПП «Кант», входящее в состав госкорпорации «Ростехнологии», ведет НИОКР по созданию опытного образца многопозиционной разнесенной радиолокационной системы полуактивной локации в поле излучения систем сотовой связи, радиовещания и телевидения наземного и космического базирования (комплекс «Рубеж»).

Сегодня многократно возросшая точность наведения систем вооружения более не требует массового применения средств воздушного нападения (СВН), а ужесточившиеся требования электромагнитной совместимости, а также санитарных норм и правил не позволяют в мирное время «загрязнять» населенные территории страны применением сверхвысокочастотного излучения (СВЧ-излучения) высокопотенциальных радиолокационных станций (РЛС). В соответствии с федеральным законом «О санитарно-эпидемиологическом благополучии населения» от 30 марта 1999 года № 52-ФЗ установлены нормы излучений, которые носят обязательный характер на всей территории России. Мощность излучения любой из известных РЛС ПВО многократно превышает эти нормы. Проблема усугубляется и высокой вероятностью применения низколетящих малозаметных целей, что требует уплотнения боевых порядков РЛС традиционного парка и увеличения затратности содержания сплошного маловысотного радиолокационного поля (МВРЛП). Для создания сплошного дежурного круглосуточного МВРЛП высотой от 25 метров (высота пролета крылатой ракеты или самолета сверхлегкой авиации) по фронту всего 100 километров требуется не менее двух РЛС типа КАСТА-2Е2 (39Н6), потребляемая мощность каждой из которых составляет 23 кВт. С учетом средней стоимости электроэнергии в ценах 2013 года только стоимость поддержания этого участка МВРЛП составит не менее трех миллионов рублей в год. Притом что протяженность границ РФ – 60 900 000 километров.

Кроме того, с началом военных действий в условиях активного применения радиоэлектронного подавления (РЭП) противником традиционные дежурные средства локации могут быть в значительной степени подавлены, поскольку передающая часть РЛС целиком демаскирует ее местоположение.

Сохранить дорогостоящий ресурс РЛС, нарастить их возможности в мирное и военное время, а также повысить помехозащищенность МВРЛП возможно путем применения систем полуактивной локации со сторонним источником подсвета.

Для обнаружения воздушных и космических целей

За рубежом широко проводятся исследования по использованию источников стороннего излучения в системах полуактивной локации. Пассивные радарные системы, анализирующие отраженные от целей сигналы ТВ-вещания (эфирного и спутникового), FM-радио и сотовой телефонии, КВ радиосвязи, за последние 20 лет стали одной из самых популярных и многообещающих областей изучения. Считается, что наибольших успехов здесь достигла американская корпорация Lockheed Martin со своей системой Silent Sentry («Тихий часовой»).

Собственные версии пассивных радаров разрабатывают фирмы Avtec Systems, Dynetics, Cassidian, Roke Manor Research, а также французское космическое агентство ONERA. Активно работы по данной тематике ведутся в Китае, Австралии, Италии, Великобритании.

Скрытый «Рубеж» воздушного контроля

Аналогичные работы по обнаружению целей в поле подсвета телецентров проводились в Военной инженерной радиотехнической академии противовоздушной обороны (ВИРТА ПВО) имени Говорова. Однако полученный более четверти века назад весомый практический задел по использованию подсвета источников аналоговых излучений для решения задач полуактивной локации оказался невостребованным.

С развитием цифровых вещательных и связных технологий возможности использования систем полуактивной локации со сторонним подсветом появились и в России.

Разрабатываемый ОАО «НПП «Кант» комплекс многопозиционной разнесенной радиолокационной системы полуактивной локации «Рубеж» предназначен для обнаружения воздушных и космических целей в поле стороннего подсвета. Такое поле подсвета отличается рентабельностью мониторинга воздушного пространства в мирное время и устойчивостью к радиоэлектронному противодействию во время войны.

Наличие большого числа высокостабильных источников излучения (вещания, связи) как в космосе, так и на Земле, образующих сплошные электромагнитные поля подсвета, дает возможность их использования в качестве источника сигнала в полуактивной системе для обнаружения различного типа целей. При этом не требуется затрачивать средства на излучения собственных радиосигналов. Для приема отраженных от целей сигналов используются многоканальные разнесенные на местности приемные модули (ПМ), которые совместно с источниками излучений создают комплекс полуактивной локации. Пассивный режим работы комплекса «Рубеж» позволяет обеспечить скрытность данных средств и использовать структуру комплекса в военное время. Расчеты показывают, что скрытность полуактивной системы локации по коэффициенту маскировки как минимум в 1,5–2 раза выше, чем РЛС с традиционным совмещенным принципом построения.

Применение более рентабельных средств локации дежурного режима позволит существенно сохранить ресурс дорогостоящих боевых систем за счет экономии установленного лимита расходования ресурса. Помимо дежурного режима предлагаемый комплекс может выполнять задачи и в условиях военного времени, когда все источники излучения мирного периода будут выведены из строя или отключены.

В этой связи дальновидным стало бы решение о создании специализированных ненаправленных передатчиков скрытого шумового излучения (100–200 Вт), которые можно было бы забрасывать или устанавливать на угрожаемых направлениях (в секторах) с целью создания поля стороннего подсвета в особый период. Это позволит на базе оставшихся с мирного времени сетей приемных модулей создать скрытую многопозиционную активно-пассивную систему военного времени.

Аналогов нет

Комплекс «Рубеж» не является аналогом ни одного из известных образцов, представленных в Государственной программе вооружения. Вместе с тем передающая часть комплекса уже существует в виде густой сети базовых станций (БС) сотовой связи, наземных и спутниковых передающих центров радиовещания и телевидения. Поэтому центральной задачей для «Канта» стало создание приемных модулей отраженных от целей сигналов стороннего подсвета и системы обработки сигналов (программно-алгоритмического обеспечения, реализующего системы обнаружения, обработки отраженных сигналов и борьбы с проникающими сигналами).

Современное состояние электронно-компонентной базы, систем передачи данных и синхронизации делает возможным создание приемных модулей компактными, с небольшими массогабаритными размерами. Такие модули могут располагаться на мачтах сотовой связи, используя линии питания данной системы и не оказывая из-за своего незначительного энергопотребления какого-либо влияния на ее работу.

Достаточно высокие вероятностные характеристики обнаружения позволяют использовать данное средство в качестве необслуживаемой, автоматической системы установления факта пересечения (пролета) определенного рубежа (например государственной границы) маловысотной целью с последующей выдачей предварительного целеуказания специализированным средствам наземного или космического базирования о направлении и рубеже появления нарушителя.

Так, расчеты показывают, что поле подсвета базовых станций с разносом между БС 35 километров и мощностью излучения от 100 Вт способно обеспечить обнаружение маловысотных аэродинамических целей с ЭПР 1м2 в «просветной зоне» с вероятностью правильного обнаружения 0,7 и вероятностью ложной тревоги 10–4. Количество сопровождаемых целей определяется производительностью вычислительных средств. Основные характеристики системы были проверены серией практических экспериментов по обнаружению маловысотных целей, проведенных ОАО «НПП «Кант» при содействии ОАО «РТИ им. академика А. Л. Минца» и участии сотрудников ВА ВКО им. Г. К. Жукова. Результаты испытаний подтвердили перспективность применения систем маловысотной полуактивной локации целей в поле подсвета БС систем сотовой связи стандарта GSM. При удалении приемного модуля на расстоянии 1,3–2,6 километра от БС с мощностью излучения 40 Вт цель типа Як-52 уверенно обнаруживалась под различными ракурсами наблюдения как в переднюю, так и заднюю полусферу в первом элементе разрешения.

Конфигурация существующей сети сотовой связи позволяет строить гибкое предполье мониторинга маловысотного воздушного и приземного пространства в поле подсвета БС сети GSM связи в приграничной полосе.

Систему предлагается строить в несколько рубежей обнаружения на глубину 50–100 километров, по фронту в полосе 200–300 километров и по высоте до 1500 метров. Каждый рубеж обнаружения представляет последовательную цепь зон обнаружения, располагаемых между БС. Зона обнаружения формируется однобазовой разнесенной (бистатической) допплеровской РЛС. Данное принципиальное решение основано на том, что при просветном обнаружении цели ее эффективная отражающая поверхность многократно возрастает, что позволяет обнаруживать малозаметные цели, выполненные по технологии «Стелс».

Наращивая возможности ВКО

От рубежа к рубежу обнаружения происходит уточнение количества и направления пролетающих целей. При этом становится возможным алгоритмическое (расчетное) определение дальности до цели и ее высоты. Количество одновременно регистрируемых целей определяется пропускной способностью каналов передачи информации по линиям сотовых сетей связи.

Информация с каждой зоны обнаружения поступает по сетям GSM в Центр сбора и обработки информации (ЦСОИ), который может располагаться за много сотен километров от системы обнаружения. Отождествление целей осуществляется по пеленгационным, частотным и временным признакам, а также при установке видеорегистраторов – по изображению целей.

Таким образом, комплекс «Рубеж» позволит:

  • создать сплошное маловысотное радиолокационное поле с многократным многочастотным перекрытием зон излучения, создаваемых различными источниками подсвета;
  • обеспечить средствами контроля воздушного и наземного пространства слабооборудованную традиционными средствами радиолокации государственную границу и другие территории страны (нижняя граница контролируемого радиолокационного поля менее 300 метров создана лишь вокруг диспетчерских узлов крупных аэропортов. Над остальной территорией РФ нижняя граница определяется только потребностями сопровождения гражданских воздушных судов вдоль магистральных авиалиний, которые не опускаются ниже 5000 метров);
  • существенно снизить затраты на размещение и ввод в эксплуатацию по сравнению с любыми аналогичными системами;
  • решать задачи в интересах практически всех силовых ведомств РФ: МО (наращивание дежурного маловысотного радиолокационного поля на угрожаемых направлениях), ФСО (в части обеспечения безопасности объектов государственной охраны – комплекс можно располагать в пригородных и городских районах для мониторинга воздушных террористических угроз или контроля использования приземного пространства), УВД (контроль над полетами легких летательных аппаратов и беспилотных средств на малых высотах, включая воздушные такси, – по прогнозам Минтранса ежегодный прирост летательных аппаратов малой авиации общего назначения составляет 20 процентов ежегодно), ФСБ (задачи антитеррористической защиты стратегически важных объектов и охраны государственной границы), МЧС (мониторинг пожарной безопасности, поиск потерпевших аварию летательных аппаратов и т. д.).

Предложенные средства и способы решения задач маловысотной радиолокационной разведки ни в коем случае не отменяют созданные и состоящие на снабжении ВС РФ средства и комплексы, а лишь наращивают их возможности.

Справочная информация:

Научно-производственное предприятие «Кант» более 28 лет разрабатывает, производит и проводит техническое обслуживание современных средств специальной связи и передачи данных, радиомониторинга и радиоэлектронной борьбы, комплексов защиты информации и информационных каналов. Изделия предприятия стоят на снабжении практически всех силовых структур Российской Федерации и используются при решении оборонных и специальных задач.

ОАО «НПП «Кант» обладает современной лабораторной и производственной базой, высокопрофессиональным коллективом ученых и инженерно-технических специалистов, что позволяет ему выполнять полный комплекс научно-производственных задач: от НИОКР, серийного производства до ремонта и сервисного обслуживания техники, находящейся в эксплуатации.

Авторы: Андрей Демидюк , исполнительный директор ОАО «НПП «Кант», доктор военных наук, доцент Евгений Демидюк , начальник отдела инновационных разработок ОАО «НПП «Кант», кандидат технических наук, доцен

Надежная ВКО страны невозможна без создания эффективной системы разведки и контроля воздушного пространства. Важное место в ней занимает маловысотная локация. Сокращение подразделений и средств радиолокационной разведки привело к тому, что над территорией РФ сегодня существуют открытые участки государственной границы и внутренних районов страны. ОАО «НПП «Кант», входящее в состав госкорпорации «Ростехнологии», ведет НИОКР по созданию опытного образца многопозиционной разнесенной радиолокационной системы полуактивной локации в поле излучения систем сотовой связи, радиовещания и телевидения наземного и космического базирования (комплекс «Рубеж»).

Сегодня многократно возросшая точность наведения систем вооружения более не требует массового применения средств воздушного нападения (СВН), а ужесточившиеся требования электромагнитной совместимости, а также санитарных норм и правил не позволяют в мирное время «загрязнять» населенные территории страны применением сверхвысокочастотного излучения (СВЧ-излучения) высокопотенциальных радиолокационных станций (РЛС). В соответствии с федеральным законом «О санитарно-эпидемиологическом благополучии населения» от 30 марта 1999 года № 52-ФЗ установлены нормы излучений, которые носят обязательный характер на всей территории России. Мощность излучения любой из известных РЛС ПВО многократно превышает эти нормы. Проблема усугубляется и высокой вероятностью применения низколетящих малозаметных целей, что требует уплотнения боевых порядков РЛС традиционного парка и увеличения затратности содержания сплошного маловысотного радиолокационного поля (МВРЛП). Для создания сплошного дежурного круглосуточного МВРЛП высотой от 25 метров (высота пролета крылатой ракеты или самолета сверхлегкой авиации) по фронту всего 100 километров требуется не менее двух РЛС типа КАСТА-2Е2 (39Н6), потребляемая мощность каждой из которых составляет 23 кВт. С учетом средней стоимости электроэнергии в ценах 2013 года только стоимость поддержания этого участка МВРЛП составит не менее трех миллионов рублей в год. Притом что протяженность границ РФ – 60 900 000 километров.

Кроме того, с началом военных действий в условиях активного применения радиоэлектронного подавления (РЭП) противником традиционные дежурные средства локации могут быть в значительной степени подавлены, поскольку передающая часть РЛС целиком демаскирует ее местоположение.

Сохранить дорогостоящий ресурс РЛС, нарастить их возможности в мирное и военное время, а также повысить помехозащищенность МВРЛП возможно путем применения систем полуактивной локации со сторонним источником подсвета.

Для обнаружения воздушных и космических целей

За рубежом широко проводятся исследования по использованию источников стороннего излучения в системах полуактивной локации. Пассивные радарные системы, анализирующие отраженные от целей сигналы ТВ-вещания (эфирного и спутникового), FM-радио и сотовой телефонии, КВ радиосвязи, за последние 20 лет стали одной из самых популярных и многообещающих областей изучения. Считается, что наибольших успехов здесь достигла американская корпорация Lockheed Martin со своей системой Silent Sentry («Тихий часовой»).

Собственные версии пассивных радаров разрабатывают фирмы Avtec Systems, Dynetics, Cassidian, Roke Manor Research, а также французское космическое агентство ONERA. Активно работы по данной тематике ведутся в Китае, Австралии, Италии, Великобритании.

Аналогичные работы по обнаружению целей в поле подсвета телецентров проводились в Военной инженерной радиотехнической академии противовоздушной обороны (ВИРТА ПВО) имени Говорова. Однако полученный более четверти века назад весомый практический задел по использованию подсвета источников аналоговых излучений для решения задач полуактивной локации оказался невостребованным.

С развитием цифровых вещательных и связных технологий возможности использования систем полуактивной локации со сторонним подсветом появились и в России.

Разрабатываемый ОАО «НПП «Кант» комплекс многопозиционной разнесенной радиолокационной системы полуактивной локации «Рубеж» предназначен для обнаружения воздушных и космических целей в поле стороннего подсвета. Такое поле подсвета отличается рентабельностью мониторинга воздушного пространства в мирное время и устойчивостью к радиоэлектронному противодействию во время войны.

Наличие большого числа высокостабильных источников излучения (вещания, связи) как в космосе, так и на Земле, образующих сплошные электромагнитные поля подсвета, дает возможность их использования в качестве источника сигнала в полуактивной системе для обнаружения различного типа целей. При этом не требуется затрачивать средства на излучения собственных радиосигналов. Для приема отраженных от целей сигналов используются многоканальные разнесенные на местности приемные модули (ПМ), которые совместно с источниками излучений создают комплекс полуактивной локации. Пассивный режим работы комплекса «Рубеж» позволяет обеспечить скрытность данных средств и использовать структуру комплекса в военное время. Расчеты показывают, что скрытность полуактивной системы локации по коэффициенту маскировки как минимум в 1,5–2 раза выше, чем РЛС с традиционным совмещенным принципом построения.

Применение более рентабельных средств локации дежурного режима позволит существенно сохранить ресурс дорогостоящих боевых систем за счет экономии установленного лимита расходования ресурса. Помимо дежурного режима предлагаемый комплекс может выполнять задачи и в условиях военного времени, когда все источники излучения мирного периода будут выведены из строя или отключены.

В этой связи дальновидным стало бы решение о создании специализированных ненаправленных передатчиков скрытого шумового излучения (100–200 Вт), которые можно было бы забрасывать или устанавливать на угрожаемых направлениях (в секторах) с целью создания поля стороннего подсвета в особый период. Это позволит на базе оставшихся с мирного времени сетей приемных модулей создать скрытую многопозиционную активно-пассивную систему военного времени.

Аналогов нет

Комплекс «Рубеж» не является аналогом ни одного из известных образцов, представленных в Государственной программе вооружения. Вместе с тем передающая часть комплекса уже существует в виде густой сети базовых станций (БС) сотовой связи, наземных и спутниковых передающих центров радиовещания и телевидения. Поэтому центральной задачей для «Канта» стало создание приемных модулей отраженных от целей сигналов стороннего подсвета и системы обработки сигналов (программно-алгоритмического обеспечения, реализующего системы обнаружения, обработки отраженных сигналов и борьбы с проникающими сигналами).

Современное состояние электронно-компонентной базы, систем передачи данных и синхронизации делает возможным создание приемных модулей компактными, с небольшими массогабаритными размерами. Такие модули могут располагаться на мачтах сотовой связи, используя линии питания данной системы и не оказывая из-за своего незначительного энергопотребления какого-либо влияния на ее работу.

Достаточно высокие вероятностные характеристики обнаружения позволяют использовать данное средство в качестве необслуживаемой, автоматической системы установления факта пересечения (пролета) определенного рубежа (например государственной границы) маловысотной целью с последующей выдачей предварительного целеуказания специализированным средствам наземного или космического базирования о направлении и рубеже появления нарушителя.

Так, расчеты показывают, что поле подсвета базовых станций с разносом между БС 35 километров и мощностью излучения от 100 Вт способно обеспечить обнаружение маловысотных аэродинамических целей с ЭПР 1м2 в «просветной зоне» с вероятностью правильного обнаружения 0,7 и вероятностью ложной тревоги 10-4. Количество сопровождаемых целей определяется производительностью вычислительных средств. Основные характеристики системы были проверены серией практических экспериментов по обнаружению маловысотных целей, проведенных ОАО «НПП «Кант» при содействии ОАО «РТИ им. академика А. Л. Минца» и участии сотрудников ВА ВКО им. Г. К. Жукова. Результаты испытаний подтвердили перспективность применения систем маловысотной полуактивной локации целей в поле подсвета БС систем сотовой связи стандарта GSM. При удалении приемного модуля на расстоянии 1,3–2,6 километра от БС с мощностью излучения 40 Вт цель типа Як-52 уверенно обнаруживалась под различными ракурсами наблюдения как в переднюю, так и заднюю полусферу в первом элементе разрешения.

Конфигурация существующей сети сотовой связи позволяет строить гибкое предполье мониторинга маловысотного воздушного и приземного пространства в поле подсвета БС сети GSM связи в приграничной полосе.

Систему предлагается строить в несколько рубежей обнаружения на глубину 50–100 километров, по фронту в полосе 200–300 километров и по высоте до 1500 метров. Каждый рубеж обнаружения представляет последовательную цепь зон обнаружения, располагаемых между БС. Зона обнаружения формируется однобазовой разнесенной (бистатической) допплеровской РЛС. Данное принципиальное решение основано на том, что при просветном обнаружении цели ее эффективная отражающая поверхность многократно возрастает, что позволяет обнаруживать малозаметные цели, выполненные по технологии «Стелс».

Наращивая возможности ВКО

От рубежа к рубежу обнаружения происходит уточнение количества и направления пролетающих целей. При этом становится возможным алгоритмическое (расчетное) определение дальности до цели и ее высоты. Количество одновременно регистрируемых целей определяется пропускной способностью каналов передачи информации по линиям сотовых сетей связи.

Информация с каждой зоны обнаружения поступает по сетям GSM в Центр сбора и обработки информации (ЦСОИ), который может располагаться за много сотен километров от системы обнаружения. Отождествление целей осуществляется по пеленгационным, частотным и временным признакам, а также при установке видеорегистраторов – по изображению целей.

Таким образом, комплекс «Рубеж» позволит:

  • создать сплошное маловысотное радиолокационное поле с многократным многочастотным перекрытием зон излучения, создаваемых различными источниками подсвета;
  • обеспечить средствами контроля воздушного и наземного пространства слабооборудованную традиционными средствами радиолокации государственную границу и другие территории страны (нижняя граница контролируемого радиолокационного поля менее 300 метров создана лишь вокруг диспетчерских узлов крупных аэропортов. Над остальной территорией РФ нижняя граница определяется только потребностями сопровождения гражданских воздушных судов вдоль магистральных авиалиний, которые не опускаются ниже 5000 метров);
  • существенно снизить затраты на размещение и ввод в эксплуатацию по сравнению с любыми аналогичными системами;
  • решать задачи в интересах практически всех силовых ведомств РФ: МО (наращивание дежурного маловысотного радиолокационного поля на угрожаемых направлениях), ФСО (в части обеспечения безопасности объектов государственной охраны – комплекс можно располагать в пригородных и городских районах для мониторинга воздушных террористических угроз или контроля использования приземного пространства), УВД (контроль над полетами легких летательных аппаратов и беспилотных средств на малых высотах, включая воздушные такси, – по прогнозам Минтранса ежегодный прирост летательных аппаратов малой авиации общего назначения составляет 20 процентов ежегодно), ФСБ (задачи антитеррористической защиты стратегически важных объектов и охраны государственной границы), МЧС (мониторинг пожарной безопасности, поиск потерпевших аварию летательных аппаратов и т. д.).

Решаться данная проблема может доступными, рентабельными и безопасными в санитарном отношении средствами. Строятся такие средства на принципах полуактивной радиолокации (ПАЛ) с использованием сопутствующего подсвета передатчиков сетей связи и вещания. Сегодня над проблемой трудятся практически все известные разработчики средств радиолокации.

Задача создания и поддержания сплошного круглосуточного дежурного поля контроля воздушного пространства на предельно малых высотах (ПМВ) сложна и затратна. Причины этого кроются в необходимости уплотнения порядков радиолокационных станций (РЛС), создании разветвлённой сети связи, насыщенности приземного пространства источниками радиоизлучений и пассивных переотражений, сложности орнитологической и метеорологической обстановки, густой населённости, высокой интенсивности использования и противоречивости нормативно-правовых актов, касающихся данной области.

Кроме того, границы ответственности различных министерств и ведомств при осуществлении контроля приземного пространства разобщены. Всё это значительно затрудняет возможности организации радиолокационного мониторинга воздушного пространства на ПМВ.

Зачем нужно сплошное поле мониторинга приземного воздушного пространства

Для каких целей необходимо создание сплошного поля мониторинга приземного воздушного пространства на ПМВ в мирное время? Кто будет основным потребителем получаемой информации?

Опыт работы в данном направлении с различными ведомствами свидетельствует о том, что никто не против создания такого поля, но каждому заинтересованному ведомству необходим (в силу различных причин) свой, ограниченный по целям, задачам и пространственным характеристикам функциональный узел.

Министерству обороны необходимо контролировать воздушное пространство на ПМВ вокруг обороняемых объектов или на определённых направлениях. Пограничной службе - над государственной границей, и не выше 10 метров от земли. Единой системе организации воздушного движения - над аэродромами. МВД - только готовящиеся к взлёту или посадке воздушные суда вне разрешённых районов совершения полётов. ФСБ - пространство вокруг режимных объектов.

МЧС - районы техногенных или природных катастроф. ФСО - районы пребывания охраняемых лиц.

Такое положение свидетельствует об отсутствии единого подхода к решению проблем и угроз, которые ожидают нас в приземной маловысотной среде.

В 2010 году проблема контроля использования воздушного пространства на ПМВ была переведена из поля ответственности государства в поле ответственности самих эксплуатантов воздушных судов (ВС).

В соответствии с действующими Федеральными правилами использования воздушного пространства, для полётов в воздушном пространстве класса G (малая авиация) был установлен уведомительный порядок использования воздушного пространства. С этого времени полёты в этом классе воздушного пространства могут выполняться без получения диспетчерского разрешения.

Если рассматривать данную проблему сквозь призму темы появления в воздухе беспилотных летательных аппаратов, а в недалекой перспективе и пассажирских «летающих мотоциклов», то возникает целый комплекс задач, связанных с обеспечением безопасности использования воздушного пространства на предельно малых высотах над населёнными пунктами, промышленно-опасными районами.


Кто будет контролировать движение в маловысотном воздушном пространстве?

Разработками таких доступных маловысотных средств передвижения занимаются компании во многих странах мира. Например, российская компания «Авиатон» планирует к 2020 году создать собственный пассажирский квадрокоптер для полётов (внимание!) вне аэродромов. То есть там, где не запрещено.

Реакция на данную проблему уже проявилась в виде принятия Государственной думой закона «О внесении изменений в Воздушный кодекс Российской Федерации в части использования беспилотных воздушных судов». В соответствии с этим законом регистрации подлежат все беспилотные летательные аппараты (БЛА) весом более 250 г.

Для того чтобы зарегистрировать БЛА, необходимо подать заявление в Росавиацию в произвольной форме с указанием данных дрона и его собственника. Однако, судя по тому, как обстоят дела с регистрацией пилотируемой лёгкой и сверхлёгкой авиации, представляется, что с беспилотной авиацией проблемы будут такие же. Теперь за регистрацию лёгких (сверхлёгких) пилотируемых и беспилотных воздушных судов отвечают две разные организации, а контроль за правилами их пользования в воздушном пространстве класса G над всей территорией страны не в состоянии организовать никто. Такая ситуация способствует неконтролируемому росту случаев нарушений правил использования маловысотного воздушного пространства и, как следствие, возрастанию угрозы техногенных катастроф и террористических атак.

С другой стороны, созданию и поддержанию широкого поля мониторинга на ПМВ в мирное время традиционными средствами маловысотной радиолокации препятствуют ограничения санитарных требований к электромагнитной нагрузке на население и совместимости РЭС. Существующее законодательство жёстко регламентирует режимы излучений РЭС, особенно в населённых районах. С этим неукоснительно считаются при проектировании новых РЭС.

Итак, что же в сухом остатке? Потребность в мониторинге приземного воздушного пространства на ПМВ объективно сохраняется и будет только возрастать.

Однако возможность её воплощения ограничивается высокой затратностью создания и поддержания поля на ПМВ, противоречивостью правовой базы, отсутствием единого заинтересованного в широкомасштабном круглосуточном поле ответственного органа, а также ограничениями, налагаемыми надзорными организациями.

Необходимо срочно приступить к разработке превентивных мер организационного, правового и технического характера, направленных на создание системы сплошного мониторинга воздушного пространства ПМВ.

Максимальная высота границы воздушного пространства класса G варьируется до 300 метров в Ростовской области и до 4,5 тысячи метров в районах Восточной Сибири. В последние годы в гражданской авиации России наблюдается интенсивный рост числа зарегистрированных средств и эксплуатантов авиации общего назначения (АОН). По состоянию на 2015 год в Государственном реестре гражданских воздушных судов Российской Федерации зарегистрировано свыше 7 тыс. воздушных судов. Следует учесть, что в целом по России зарегистрировано не более 20-30% от общего количества воздушных судов (ВС) юридических лиц, общественных объединений и частных владельцев воздушных судов, использующих летательные аппараты. Остальные 70-80% летают без свидетельства эксплуатанта либо вообще без регистрации воздушных судов.

По оценкам НП «ГЛОНАСС», в России ежегодно продажи малых беспилотных авиационных систем (БАС) увеличиваются на 5-10%, а к 2025 году их в РФ будет приобретено 2,5 млн. Ожидается, что рынок России в части потребительских и коммерческих малых БАС гражданского назначения может составить около 3-5% от общемирового.

Мониторинг: экономичный, доступный, экологически чистый

Если подходить непредвзято к средствам создания сплошного мониторинга ПМВ в мирное время, то решаться данная проблема может доступными, рентабельными и безопасными в санитарном отношении средствами. Строятся такие средства на принципах полуактивной радиолокации (ПАЛ) с использованием сопутствующего подсвета передатчиков сетей связи и вещания.

Сегодня над проблемой трудятся практически все известные разработчики средств радиолокации. Исследовательская группа SNS Research опубликовала доклад «Рынок пассивных радаров для военной и гражданской авиации: 2013-2023» (Military & Civil Aviation Passive Radar Market: 20132023) и ожидает, что к 2023 году объёмы инвестиций в обоих секторах в развитие технологий таких радаров достигнут более 10 млрд долларов США, причём ежегодный рост в период 2013-2023 гг. составит почти 36%.

Простейшим вариантом полуактивной многопозиционной РЛС является двухпозиционная (бистатическая) РЛС, в которой передатчик подсвета и радиолокационный приёмник разнесены на расстояние, превышающее ошибку измерения дальности. Бистатическая РЛС состоит из передатчика сопутствующего подсвета и радиолокационного приёмника, разнесённых на расстояние базы.

В качестве сопутствующего подсвета могут быть использованы излучения передатчиков связных и широковещательных станций как наземного, так и космического базирования. Передатчик подсвета формирует всенаправленное низковысотное электромагнитное поле, находясь в котором цели

С определённой эффективной поверхностью рассеяния (ЭПР) отражают электромагнитную энергию, в том числе и в направлении радиолокационного приёмника. На антенную систему приёмника поступают прямой сигнал источника подсвета и задержанный относительно него эхо-сигнал от цели.

При наличии антенны направленного приёма измеряются угловые координаты цели и суммарная дальность относительно радиолокационного приёмника.

Основой существования ПАЛ являются обширные зоны покрытия сигналами вещания и связи. Так, зоны различных операторов сотовой связи практически полностью перекрываются, взаимно дополняя друг друга. Помимо зон подсвета сотовой связи территорию страны накрывают перекрывающиеся поля излучений передатчиков эфирного вещания ТВ, УКВ ЧМ и FM станций вещания спутникового ТВ и так далее.

Для создания многопозиционной сети радиолокационного мониторинга на ПМВ необходима развёрнутая сеть связи. Такими возможностями располагают выделенные защищённые APN - каналы передачи пакетной информации на основе технологии М2М «телематика». Типовые характеристики пропускной способности таких каналов при пиковой нагрузке не хуже 20 Кб/сек, но по опыту применения практически всегда намного выше.

АО «НПП «КАНТ» ведёт работы по исследованию возможности обнаружения целей в поле подсвета сетей сотовой связи. В ходе исследований было установлено, что наиболее широко покрытие территории РФ осуществляется сигналом связи стандарта GSM 900. Этот стандарт связи предоставляет не только достаточную энергетику поля подсвета, но и технологию пакетной передачи данных GPRS беспроводной связи со скоростью до 170 Кб/сек между элементами многопозиционной РЛС, разнесёнными на региональные расстояния.

Проведённые в рамках НИОКР работы показали, что типовое загородное территориально-частотное планирование сети сотовой связи обеспечивает возможность построения маловысотной многопозиционной активно-пассивной системы обнаружения и сопровождения наземных и воздушных (до 500 метров) целей с эффективной отражающей поверхностью менее 1 кв. м.

Большая высота подвеса базовых станций на антенных башнях (от 70 до 100 метров) и сетевая конфигурация систем сотовой связи позволяют решать задачу обнаружения маловысотных целей, выполненных по малозаметной технологии СТЕЛС, методами разнесённой локации.

В рамках НИОКР для обнаружения воздушных, наземных и надводных целей в поле сетей сотовой связи разработан и испытан обнаружитель пассивного приёмного модуля (ППМ) полуактивной радиолокационной станции.

В результате полевых испытаний макета ППМ в границах сети сотовой связи стандарта GSM 900 с расстоянием между базовыми станциями 4-5 км и мощностью излучения 30-40 Вт достигнута возможность обнаружения на расчётной дальности пролётов самолёта типа Як-52, БЛА - квадракоптера типа DJI Phantom 2, движущегося автомобильного и речного транспорта, а также людей.

В ходе проведения испытаний оценивались пространственно-энергетические характеристики обнаружения и возможности GSM-сигнала по разрешению целей. Продемонстрирована возможность передачи пакетной информации обнаружения и удалённого картографирования информации из района испытаний на вынесенный индикатор наблюдения.

Таким образом, для создания сплошного круглосуточного многочастотного перекрывающегося поля локации в приземном пространстве на ПМВ необходимо и возможно построение многопозиционной активно-пассивной системы локации с объединением потоков информации, получаемых с помощью источников подсвета различного диапазона волн: от метрового (аналоговое ТВ, УКВ ЧМ и FM вещание) до короткого дециметрового (LTE, Wi-Fi). Для этого необходимы усилия всех работающих в данном направлении организаций. Необходимая инфраструктура и обнадёживающие экспериментальные данные для этого имеются. Можно смело утверждать, что наработанная информационная база, технологии и сам принцип скрытой ПАЛ найдут своё достойное место и в военное время.


На рисунке: «Схема бистатической РЛС». Для примера приведена действующая зона покрытия границ Южного федерального округа сигналом оператора сотовой связи «Билайн»

Чтобы оценить масштабы размещения передатчиков подсвета, возьмём для примера среднестатистическую Тверскую область. В ней на площади 84 тысячи кв. км с населением 1 млн 471 тысяча человек действуют 43 радиовещательных передатчика трансляции звуковых программ УКВ ЧМ и FM станций мощностью излучения от 0.1 до 4 кВт; 92 аналоговых передатчика телевизионных станций мощностью излучения от 0.1 до 20 кВт; 40 цифровых передатчиков телевизионных станций мощностью от 0.25 до 5 кВт; 1500 передающих радиотехнических объектов связи различной принадлежности (в основном базовые станции сотовой связи) мощностью излучения от единиц мВт в городской зоне до нескольких сотен Вт в загородной зоне. Высота подвеса передатчиков подсвета варьируется от 50 до 270 метров.


Понравилась статья? Поделитесь ей
Наверх